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Abstract

Robotic Foundation Models (RFMs) hold great promise
as generalist, end-to-end systems for robot control. Yet
their ability to generalize across new environments, tasks,
and embodiments remains limited. We argue that this
stems from their foundations: most RFMs are built by
fine-tuning internet-pretrained Vision-Language Models
(VLMs). However, these VLMs are trained on 2D image-
language tasks and lack the 3D spatial reasoning inherently
required for embodied control in the 3D world. Bridging
this gap is challenging due to the lack of diverse large-scale
robotic data. Instead, we propose to enrich non-robotic
image data with 3D annotations and enhance a pretrained
VLM with 3D understanding capabilities. We build SPEAR-
VLM: a 3D-aware VLM that infers object coordinates in 3D
space from a single 2D image. Building on SPEAR-VLM,
we introduce our main contribution, SPEAR-1: a robotic
foundation model that combines language-instructed em-
bodied control with grounded 3D perception. We train
SPEAR-1 on ∼45M frames from 24 Open X-Embodiment
datasets and show it outperforms or matches state-of-the-
art models such as π0-FAST and π0.5 while using 20× fewer
robot demonstrations. This training strategy unlocks new
VLM capabilities and as a consequence boosts the relia-
bility of embodied control beyond what is achievable with
robot-only data. We make our model weights and 3D-
annotated datasets publicly available.

1. Introduction

Vision-Language-Action (VLA) modeling has emerged as
a promising paradigm for building generalist, end-to-end
systems for robot control. Their success relies on two fac-
tors: (1) the strong visual-linguistic understanding inher-
ited from internet-scale pretraining of the underlying VLM,
which provides broad “common sense” knowledge and (2)
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Figure 1. Robotic foundation models performance on different
embodiments w.r.t amount of robotic training data. SPEAR-1 out-
performs state-of-the-art π0-FAST [31] and matches π0.5 [5] on
Franka embodiment while using 20× less robot demonstrations
data.

training on large, diverse datasets of robot demonstrations.
However, building effective VLA models (VLAs) still

comes with several challenges. First, most off-the-shelf
VLMs are trained on 2D image-language tasks and thus
lack the 3D spatial reasoning inherently required for em-
bodied control in the 3D world. Second, acquiring and scal-
ing robot demonstration data is costly and time-consuming,
making it difficult to reach the data volumes needed for ro-
bust generalization [12].

Intuitively, 3D spatial reasoning capabilities can be ac-
quired solely from visual data with 3D annotations, without
any need to resort to expensive robot demonstration data. To
address this, we integrate a pretrained depth encoder in an
existing VLM and train the resulting model, called SPEAR-
VLM, on 3D understanding tasks. In particular, in order to
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SPEAR-VLM Action Expert

The 3D bouding box of the carrot is
[0.3, 0.7, 0.24], [-0.05, 0.1, 0.24], ...

[continuous actions] 
0.05, 0.12, -0.34, 0.0, 0.07, 0.99, 0, ...
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What are the coordinates of the
3D bounding box of the carrot?

What is the 2D bounding box 
bounding box of the bear? Pick up the orange

Stage 0 (PaliGemma)
Web data

Stage 1 (SPEAR-VLM)
Non-robotic 2D image data

Stage 2 (SPEAR-1)
Robot demonstrations data

Figure 2. SPEAR-1 stages of training. Stage 0: General VLM pretraining on web scale data, e.g. PaliGemma. Stage 1: Integrate a mono
depth vision encoder in PaliGemma VLM to build SPEAR-VLM and train it on embodied-inspired VQA tasks, e.g. 3D bounding box
estimation or object-to-object distance estimation. We use 2D images from non-robotic data, enriched with 3D annotations. Stage 2: Add
a randomly-initialized action expert to our 3D-enhanced SPEAR-VLM to train a generalist robotic foundational model, SPEAR-1, on robot
demonstration data from OpenX [30]. Each stage boosts the model’s robotics-relevant knowledge and capabilities, but simultaneously the
abundance and diversity of data decreases.

embed as much control-relevant 3D knowledge in the VLM,
we design the tasks in this pretraining stage to be as close
as possible to the embodied tasks a VLA needs to learn. For
example, SPEAR-VLM is trained to estimate the xyz com-
ponents of 3D bounding boxes and distances between ob-
jects - tasks which intuitively an embodied VLA also needs
to solve implicitly for accurate translation control.

Building on SPEAR-VLM, we introduce SPEAR-1,
a robotics foundation model that combines language-
instructed embodied control with grounded 3D perception.
We find that by addressing the 3D understanding problem
during the VLM training stage, we can actually reduce robot
demonstration data requirements 20× and achieve superior
performance than state-of-the-art robot foundation models
such as π0-FAST [31] and match π0.5 [5].

Unlike previous works that try to address the challenge

of 3D knowledge for robot control, SPEAR-1 demonstrates
improvement on foundation level. It is capable of achiev-
ing state-of-the-art robot control on multiple robot embodi-
ments solely by fine-tuning for the target embodiment rather
than the specific target evaluation environment. Further-
more, SPEAR-1 demonstrates how significant amounts of
robot demonstration data can be ’replaced’ by non-robotic
3D-annotated image data.

In summary, our work makes the following contribu-
tions:

• SPEAR-VLM: a VLM with embodied-inspired 3D capa-
bilities, e.g. localizing objects in 3D coordinates, trained
on enriched 2D-image non-robotic datasets and boosting
downstream VLA performance

• SPEAR-1: an open-weight robotics foundation model
with 3D understanding, which achieves significant im-
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provements over state-of-the-art baselines.
• Substantial reduction in reliance on hard-to-collect

robotic data: by leveraging only 200k non-robotic 2D
images, SPEAR-1 outperforms state-of-the-art models
trained with more than 900M additional frames of
robotic demonstrations

2. Related Work

Spatial Understanding for VLMs. Majority of existing
VLMs trained on large-scale datasets have been limited to
flat 2D image understanding [3, 17, 25, 37, 39, 42]. Our
work builds on top of PaliGemma VLM [3] by integrating
the MoGe monocular depth estimator [43] as a supplemen-
tary vision backbone and training on manipulation-relevant
3D tasks to enhance the VLM understanding to 3D. Pre-
viously, Chen et al. [7] used a similar data annotation ap-
proach for training a 3D-aware VLM, but they do not inte-
grate a pretrained depth estimator in the VLM and neither
the model, nor the dataset is publicly accessible. Addition-
ally, unlike SpatialVLM [7] or RoboSpatial [36], trained on
high-level spatial relationships, our SPEAR-VLM focuses
on explicit 3D-coordinate prediction: a pretraining task in-
tuitively much closer to embodied control. SpatialBot [6]
also previously proposed a spatially-aware VLM targeting
robot control, but their method involves multi-step VLM in-
ference process and was never shown to integrate in a VLA
for generalist robotic control.

Vision-Language-Action Models. Recently, multiple
works have developed generalist robot policies [4, 5, 9, 19,
30, 31, 47] trained on multiple robot embodiments. Our
SPEAR-1 builds on top of the π0 architecture, but we initial-
ize the underlying VLM from our SPEAR-VLM to integrate
pretrained 3D understanding. Previously, SpatialVLA [33]
proposed integrating a monocular depth encoder [44] in
the VLA, but without any VLM alignment or pretraining
and therefore learning 3D capabilities entirely from hard-
to-collect robotic data. MolmoAct [20] recently proposed
a spatially-aware VLA, but the approach involves ’reason-
ing’ at inference time, rendering the method impractical for
real-time control due to high latency. Most closely related,
Gemini Robotics 1.0 [40] follows a similar 3D pretraining
method to fine-tune the significantly larger Gemini 2.0 [32]
and distill into a smaller VLA with reasoning capabilities.
With the majority of the method details remaining undis-
closed, our work still differs in multiple important aspects:
(1) we investigate the benefits of 3D pretraining in isolation,
(2) train on substantially smaller and less diverse, but open-
access datasets from OpenX [30], (3) train a VLA capable
of running inference locally on the robot instead of in the
cloud and (4) demonstrate the ability to reduce robotic data
requirements with non-robotic 2D images.

3. Method
In this section, we describe SPEAR-1 and its training recipe
in detail. In section 3.1 we describe the architecture, data
generation pipeline, and training procedure of our 3D-aware
SPEAR-VLM. This stage aims to enhance the 3D spatial
understanding capabilities of an off-the-shelf VLM through
fine-tuning on 3D spatial perception tasks. We then pro-
ceed, in section 3.2 to detail the architecture and training
procedure of SPEAR-1, which comprises a pre-training and
post-training stage. The pre-training stage involves training
on a large and diverse mixture of robot demonstration data
to acquire general knowledge of robot manipulation. Post-
training involves fine-tuning for a specific embodiment.

3.1. SPEAR-VLM
Most recent robotics foundational models are based on
Vision-Language-Models (VLMs) pretrained on large cor-
pora of internet-scale text-image data. The architecture of
those models usually consists of a vision encoder, a vision-
to-text-embedding feature projector, and a LLM. The ma-
jority of the tasks on which VLMs are usually trained are
limited to 2D space [3, 17, 24], e.g. image captioning, 2D
bounding box detection, object segmentation, OCR, visual
question answering (VQA). To extend the capabilities of a
pretrained VLM to 3D understanding, we propose (1) ex-
tending the model architecture by adding a monocular depth
encoder and (2) training the VLM on VQA tasks that re-
quire explicit 3D reasoning.

VLM Architecture. Our model uses PaliGemma [3] as
backbone, but the same method can be used with any late-
fusion VLM [1, 10, 26]. PaliGemma consists of three main
components: (1) a SigLIP visual encoder [45], (2) a linear
projector that maps the visual tokens predicted by the vi-
sual encoder to the language model input space and (3) a
Gemma language model [38]. To enable the model to per-
ceive depth more accurately, we integrate the MoGe [43]
depth encoder as an additional vision encoder. We choose
MoGe due to its affine-invariant modeling approach, capa-
ble of fitting cameras with different intrinsics. Our intuition
is that affine-invariant depth should generalize better across
environments thus being better suited for learning feedback
control. Similar to MoGe decoder inputs, we concatenate
the intermediate features from the last 4 layers of the MoGe
ViT encoder along the feature dimension, project them to
the LLM embedding space via randomly-initialized linear
projector. The visual input to the LLM consists of the aver-
aged outputs of SigLIP and MoGe projectors. To encode 3D
information into text we extend the PaliGemma tokenizer
with N = 1024 3D tokens (see Appendix A.2.3).

3D pretraining tasks. Given the above architecture, we
propose a pre-training scheme to enable the model to lever-
age the depth information in MoGe’s encoder features and
acquire 3D spatial understanding capabilities. To embed as
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Figure 3. SPEAR-VLM overview. Left: Training data mixture, annotations and example question-answer pairs. Right: High-level
architecture and fusion between SigLIP and MoGe encoders.

much control-relevant 3D knowledge in the VLM, we de-
sign VQA tasks inspired by some of the embodied tasks
a VLA needs to learn, e.g. Output the vertices of the 3D
bounding box of object X or Output the xyz components
of the distance between object X and object Y. Similar to
some VLA tasks, e.g. Place object X on object Y, our VLM
pre-training tasks require learning semantic 3D localization,
object-to-object spatial relations, and 3D coordinate system
geometry. For a full list of question-answer pairs, see Ap-
pendix A.2.1.

3D Vision-Question-Answering Data. There are few
open datasets that contain the annotations needed for the
proposed training scheme. We devise the following semi-
automatic annotation pipeline to enrich existing datasets
with the necessary annotations: object-level segmentation
masks, semantic labels and projected 3D point cloud. Im-
portantly, our pipeline requires only 2D images as input,
enabling the use of large-scale image datasets. We utilize
off-the-shelf vision foundation models as follows:
1. Use Gemini [8] to detect 2D bounding boxes and seman-

tic labels for the objects on the image.
2. Prompt SAM2 [34, 35] with the detected bounding

boxes to produce instance-level segmentation masks
3. Obtain 3D point cloud annotations for the entire image

via MoGe [43]
To construct a training example, we randomly sample a

templated prompt and an object (or several) from the im-
age, obtain the object 3D point cloud by filtering the an-
noted MoGe 3D point cloud with the object segmentation
mask, and compute the oriented 3D bounding box as well as
any other 3D information needed to construct the question-
answer pair.

We focus on indoor environments and annotate the
”cooking” and ”bike repair” parts of EgoExo4D [13] which

already have segmentation masks, resulting in 200k images.
For visual diversity, we also annotate 30k frames of the
Bridge-V2 [41] robot demonstration dataset, downsampled
to 10% in the VLM training data mixture.

Training process. Similar to LLaVa [24], we train the
VLM in two stages. In the first stage, we initialize from
PaliGemma and MoGe weights, with the MoGe projector
and the LLM depth token embeddings initialized randomly.
We train only the randomly initialized weights and SigLIP
projector, keeping everything else frozen. In the second
and longer stage, we keep only SigLIP and MoGe encoders
frozen and we scale the next-token-prediction loss for depth
tokens by a factor λ = 2.

3.2. SPEAR-1
SPEAR-1 builds upon SPEAR-VLM by extending it with
an action expert module to predict continuous actions via
conditional flow matching. We provide a detailed overview
of the architecture and formulation in the following.

Preliminaries. Formally, we want to learn a function
π(·) mapping an observation ot to a sequence of robot ac-
tions At = [at,at+1, . . .at+H−1] over an horizon H . The
observation is defined as ot = [I1t , . . . , I

n
t ,pt, lt], where

Iit is the i-th image observation from an uncalibrated cam-
era , pt is a vector containing the robot state comprising
of the end-effector pose and gripper state, lt is a vector of
language tokens representing the language instruction. In
this work we focus on learning position control of fixed-
base single-arm manipulators. Each action in the sequence
is thus composed of an end-effector position control and
a gripper control. The end-effector control is defined as a
delta with respect to the current end-effector cartesian pose
∆ee = [∆trans,∆rot]. The translation component, ∆trans

is in base frame and the rotation component, ∆rot, is in
end-effector frame and is represented as a quaternion. The
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gripper action is binary.
Architecture. Similar to π0 [4], SPEAR-1 combines a

VLM, which processes the image-language inputs, with an
action expert module, which processes robot proprioception
observations and predicts the robot action sequence con-
ditioned on the VLM transformer intermediate key-value
pairs. The action expert has the same architecture and num-
ber of layers as the Gemma [38] transformer, but its hidden
size is twice smaller for a total of ∼300M parameters. Cor-
responding layers in the VLM and the action expert have a
shared attention operation with block-wise causal attention
over the blocks [It, lt], [pt], [ât+1, . . . , ât+H−1]. Within
each block, there is full bidirectional attention and the to-
kens in each block can attend to tokens in previous blocks,
but cannot attend to the tokens in future blocks. During
training, only the action sequence prediction is supervised
and the gradient updates are propagated back to the VLM
parameters through the shared attention layers. For further
details, see Appendix A.3.1.

Flow Matching Formulation. The action sequence pre-
diction is supervised via conditional flow matching [22, 23,
27]. Specifically, the model takes as input the observa-
tion ot, the flow-matching step τ ∈ [0, 1] and a sequence
of noisy actions Aτ

t = [aτt , . . . ,a
τ
t+H−1] and outputs a

denoising vector vθ(A
τ
t ,ot). We denote the decomposed

action of translation, rotation and gripper components as
at = [xt,qt,gt]. For clarity, we use the square brackets
operator [·] on the predicted denoising vector vθ and the de-
noising vector field u to denote a specific component, e.g.
u[xt] corresponding to the translation component of the de-
noising vector field.

We follow a flow matching formulation in linear space
for translation and on the S3 manifold of unit quaternions
for rotation. For simplicity, we omit the gripper component
as it follows the same linear formulation as translation.

In practice, during training we sample a random timestep
τ ∼ B(α, β) and random noise xϵ ∼ N (0, I),qϵ ∼ U(S3).
We then compute the “noisy actions” by linear interpolation
for translation xτ

t = τxt + (1 − τ)xϵ and spherical linear
interpolation on the S3 manifold for quaternion rotation

qτ
t =

sin
(
(1− τ)θ

)
sin θ

qϵ +
sin(τθ)

sin θ
qt, (1)

with θ = cos−1(qϵ · qt).
We then pass the “noisy action sequence” Aτ

t as input to
the model and train it to output the denoising vector field

u(Aτ
t |At) =

dAτ
t

dτ
.

We apply a conditional flow-matching loss. For transla-
tion, this is equivalent to the MSE loss

LR3(θ) =
∣∣∣∣vθ(A

τ
t ,ot)[Xt]− u(Aτ

t |At)[Xt]
∣∣∣∣2. (2)

We use a combination of two losses for rotations, as we
experimentally found a single loss to be insufficient on its
own. We apply a cosine loss directly on the velocity pre-
dictions Lcos

t (θ) = 1 − vθ(A
τ
t ,ot)[q] · u(Aτ

t |At)[q] and
a geodesic loss Lgeo

t (θ) = min |qτ+δ
t ± qτ+δ

θ,t | [11, 14]
on a rotation prediction qτ+δ

θ,t = qτ
t ⊗ qδ

θ,t ∈ S3, where
qδ
θ,t is computed by integrating vθ[qt] ∈ R4 over a ran-

domly sampled integration step δ ∈ (0.01, 1−τ), and qτ+δ
t

is computed from (1). The complete rotation loss is thus
LS3(θ) =

∑t+H
k=t

[
Lcos
k (θ) + Lgeo

k (θ)
]

and the final transla-
tion and rotation loss is

L(θ) = Ep(At|ot),q(Aτ
t |At) [LR3(θ) + LS3(θ)] . (3)

During inference, we generate actions by integrating the
learned vector field from τ = 0 to τ = 1, starting with
random noise x0 ∼ N (0, I),q0 ∼ U(S3) and using Euler
integration in linear space for translations

xτ+δ
t = xτ

t + δvx
θ (A

τ
t ,ot), (4)

and on the S3 manifold for rotations

qτ+δ
t = qτ

t ⊗ qδ
t (v

q
θ (A

τ
t ,ot)). (5)

For further details, see Appendix A.3.2.

4. Experimental evaluation
We evaluate the performance of SPEAR-1 as a gener-
alist policy for robot manipulation and compare it to
open-weights and open-source state-of-the-art VLA mod-
els. Concretely, our experiments aim to answer the follow-
ing research questions:
1. Does 3D VLM pretraining improve the performance of

SPEAR-1 on robot control tasks?
2. How well does SPEAR-1 compare against state-of-the-

art VLA models?
To answer these questions, we evaluate SPEAR-1 on a

variety of manipulation tasks in both simulation and multi-
ple real-world environments.

4.1. Implementation details
VLM training. We train SPEAR-VLM with a batch size
of 512 for 2k steps during the first alignment stage and 10k
steps for the second stage, for a total of 18 hours on 16
Nvidia H200 GPUs.

VLA pre-training. For VLA training, we start
from SPEAR-VLM and randomly initialized action expert
weights. We provide two camera views as inputs to the
model: external, with resolution 280x210, and wrist, with
resolution 112x112. When the wrist camera view is not
available, we feed a black image. We train on 32 H200
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Method Carrot on Plate (Dist) Carrot on Plate (Elev.) Marker in Cup (Dist) Average

π0-PaliGemma (DROID) 0.0 0.32 67.0 0.34
π0-SPEAR-VLM (DROID) 0.42 0.52 43.0 0.46

Table 1. Comparison of a VLA based on PaliGemma [3] and a VLA based on SPEAR-VLM on the DROID dataset [18]. Scores
indicate task progress (higher is better). SPEAR-VLM achieves noticeable improvement on average. Results on ”Carrot on Plate” task,
which is unseen during DROID training, indicate that SPEAR-VLM leads to better generalization to 3D positions of the target objects.

Model Put Spoon on Towel Put Carrot on Plate Stack Green Block on Yellow Block Put Eggplant in Yellow Basket Overall

OpenVLA 0% 0% 0% 4.1% 1.0%
SpatialVLA 16.7% 25.0% 29.2% 100.0% 42.7%
SPEAR-1 (ours) 62.5% 58.3% 45.82% 62.5% 57.3%

Table 2. SIMPLER [21] simulation evaluations. SpatialVLA numbers copied from [33]. SIMPLER results tend to be indicative of A/B
performance in the real world, but not necessarily of absolute performance.

GPUs with batch size 2048 for 300k steps (∼6 days) on a
data mixture comprising 24 datasets (see Table 3) from the
Open X-Embodiment (OXE) collection [30].

VLA post-training. For WidowX real-world and SIM-
PLER simulation experiments and for Franka real-world ex-
periments, we additionally fine-tune our OXE pre-trained
SPEAR-1 for 50k steps on the Bridge V2 [41] and
DROID [18] datasets respectively. We refer to these ver-
sions as SPEAR-1 (Bridge) and SPEAR-1 (DROID) re-
spectively.

4.2. Ablation study: SPEAR-VLM vs PaliGemma

We first evaluate whether 3D VLM pretraining improves
VLA performance on downstream robot control tasks. We
instantiate two VLA models from the same π0 style archi-
tecture: one initialized from the base PaliGemma VLM and
the other from our 3D-aware SPEAR-VLM. Due to the cost
of pre-training on the entire OXE mixture (Table 3), we
train both models directly on DROID for 100k steps and
batch size 2048. We refer to the resulting models as π0-
PaliGemma (DROID) and π0-SPEAR-VLM (DROID) re-
spectively. We then compare the performance of both VLAs
on three of the four tasks from the Franka experiments. The
results are reported in Table 1. We can observe that π0-
SPEAR-VLM (DROID) is able to outperform the baseline
by more than 10% on average. We note that the task ”Carrot
on plate” is not seen in the DROID training dataset, showing
the improved generalization capabilities of SPEAR-VLM.
We hypothesize that the lower scores of both models on the
variation of the task on the tabletop vs the variation with
different elevations is due to workspace 3D position be-
ing out-of-distribution compared to the training data. Even
in this case, π0-SPEAR-VLM (DROID) is able to success-
fully complete the task in some cases while π0-PaliGemma
(DROID) fails every time.

4.3. Simulation experiments

We evaluate SPEAR-1 on the tasks of the WidowX Robot
environment of the SimplerEnv simulation benchmark [21],
and compare it with OpenVLA [19] and SpatialVLA [33].
For OpenVLA, we use the publicly available weights
trained on OXE, whereas for SpatialVLA we use the pub-
licly available weights pre-trained on OXE and fine-tuned
on BridgeV2.

We report the results in Table 2. Our model is able to
outperform the baselines by more than 10%.

In our experience, we found SIMPLER simulation re-
sults to be indicative of A/B performance of the models on
the real WidowX robot, but not necessarily of absolute per-
formance. Therefore, we focus on real-world evaluations.

4.4. Real-world experiments

We conduct evaluations on a total of 8 manipulation tasks
across two robot platforms: WidowX and Franka Research
3 (Franka). The tasks are designed to assess the ability of
the evaluated models to generalize to unseen environments
and objects. Following [2], we design the tasks to be quite
difficult for the evaluated models, targeting policy success
rates around 50%. This is often achieved through the addi-
tion of distractors and by varying the visual background.

Evaluation protocol. For each task we define M initial
conditions by varying the starting position of the objects in
the scene. Following previous works [2, 30], we define a
scoring rubric with partial scoring for each task. For more
details about the scoring rubrics, see Appendix A.4. We
execute N trials for each initial condition, for a total of NxM
trials per task. We report the average score for each task and
across tasks.

WidowX experiments. Our hardware setup for this
set of experiments closely matches the original Bridge V2
setup [41], with a single Logitech C920 external camera po-
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Figure 4. Real world evaluation on WidowX. SPEAR-1 is able to achieve 20% higher average task progress across all tasks than
OpenVLA, a strong baseline in this setting.

Figure 5. Real world evaluation on Franka. Scores indicate task progress (higher is better). We find that without any fine-tuning on the
target environment, SPEAR-1 noticeably outperforms π0-FAST, and matches π0.5, even though both baselines are trained on 20× more
robotic data from significantly more diverse environments.

sitioned on either side of the robot arm and pointing toward
the workspace. For this set of experiments, 4 tasks are eval-
uated, with M = 4, N = 3. We compare the performance of
SPEAR-1 with OpenVLA [19], using the publicly released
implementation and model weights. We tried comparing to
SpatialVLA [33], but were unable to get the model to work
successfully in our setup. In this setting, we do not compare
against π0 [4], π0-FAST [31] and π0.5 [5] due to the un-
availability of publicly accessible weights for the WidowX
platform. The results are reported in Figure 4. SPEAR-1 is
able to achieve 20% higher average task progress across all

tasks than OpenVLA, a notoriously strong baseline in this
setting.

Franka experiments. Our hardware setup for this set
of experiments is similar to that of DROID [18]. We de-
sign 4 tasks, with M = 5 and N = 3. Tasks 1 and 2, ”Carrot
on plate (distractors)” and ”Carrot on plate (distractors +
elevations)”, both feature a seen task whose difficulty is in-
creased by the presence of distractors and by varying the
elevation of the workspace. Task 3 and 4, ”Marker in cup
(with distractors)” and ”Cover the pot”, require the model
to be able to precisely grasp small objects and reason about
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the correct way to accurately position them to complete the
task. We found that the inclusion of the wrist camera view is
crucial for training on DROID and deployment on a similar
setup. Therefore, to ensure a fair comparison, we only com-
pare against open-weights models for which a wrist cam-
era enabled version finetuned on DROID is publicly avail-
able. Specifically, we compare SPEAR-1 with the DROID-
finetuned variants of π0-FAST [4, 31], a strong autoregres-
sive baseline, and π0.5 [5], one of the latest state-of-the-art
robotic foundation model optimized for open-world gener-
alization.

The results of this set of experiments are reported in Fig-
ure 5. Without any fine-tuning on the target environment,
SPEAR-1 is able to significantly outperform π0-FAST, and
match π0.5. We note that both baselines do not integrate
any sort of specialized 3D-aware training and are trained on
at least 900M more robot demonstration frames collected in
more diverse environments. In contrast, SPEAR-1 is trained
on ∼45M frames, approximately 20× less robotics data.
These results indicate the importance of 3D-based knowl-
edge and pretraining for generalization in robot manipula-
tion tasks.
π0-FAST integrates a specialized action tokenization

compared to π0 and was the first generalist policy trained on
the DROID dataset [18] to be successfully evaluated zero-
shot in unseen environments, without fine-tuning. In com-
parison, SPEAR-1, which follows the π0 architecture, can
reach ∼ 4× higher performance than π0-FAST on our set of
tasks without fine-tuning and without the large-scale robotic
data used by π0-FAST.

Apart from architectural enhancements and co-training
on top of π0-FAST, π0.5 integrates a high-level semantic
subtask prediction and robotic data mixture explicitly fo-
cused on environment diversity. Qualitatively and quantita-
tively we find π0.5 to be much better at environment gener-
alization than π0-FAST and match SPEAR-1’s performance
on our set of evaluation tasks. This suggests that 3D VLM
pretraining on non-robotic data from diverse environments
might be a more scalable way to boost robotic models’
generalization capabilities without the need for large-scale
robotic data collection in diverse environments.

5. Discussion and Limitations
We introduced SPEAR-VLM, a 3D-aware vision-language
model derived from PaliGemma and trained on 2D images
from non-robotic datasets enriched with 3D annotations. To
embed as much control-relevant 3D knowledge in SPEAR-
VLM, we train it on VQA tasks inspired by embodied tasks
such as 3D bounding box prediction and object-to-object
distance prediction. Stepping on this foundation, we built
SPEAR-1, a robotics foundation model that can be de-
ployed across multiple robot platforms and embodiments,
exhibits robustness to 3D variations, and matches or outper-

forms state-of-the-art foundation models which have been
trained on 20× more robot demonstrations data. Ablation
studies support our hypothesis that enhancing VLM capa-
bilities with 3D knowledge is the primary factor driving ro-
bustness and reducing dependence on hard-to-collect robot
demonstrations data.

Ablation studies support our hypothesis that enhancing
VLM capabilities with 3D knowledge is the primary fac-
tor driving robustness and reducing dependence on hard-to-
collect robot demonstrations data.

While SPEAR-1 is a step forward in building generalist
robot foundation models, there are multiple questions yet
to be studied. For instance, maybe other embodied capa-
bilities could possibly be enhanced with suitable 3D VLM
pretraining tasks. Large-scale 3D VLM pretraining on web-
scale data could also further boost downstream robotic per-
formance across multiple environments and visual back-
grounds. It also remains to be seen how well SPEAR-1
generalizes to orders of magnitude more tasks and environ-
ments against models such as π0.5 trained on significantly
more diverse robot data.

Our 3D approach also bears a number of limitations.
For instance, it is not well suited for deformable objects
or objects with complex shapes. Perhaps different 3D pri-
ors could be used to better capture the geometry of such
objects. It is also not immediately clear how to best com-
bine MoGe’s affine-invariant depth predictions with exist-
ing point cloud datasets in metric space and maybe metric-
depth estimators can help resolve this limitation.
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A. Appendix
A.1. Model Training Details

Dataset Weight

austin buds dataset 0.5
austin sailor dataset 2.0
austin sirius dataset 0.5
berkeley autolab ur5 1.0
berkeley cable routing 0.1
berkeley fanuc manipulation 1.0
bridge 18.0
dlr edan shared control 0.1
droid 35.0
fmb 1.5
fractal20220817 data 12.0
furniture bench dataset 1.5
iamlab cmu pickup insert 0.3
kuka 4.0
language table 1.5
nyu franka play dataset 0.3
roboset (kinesthetic) 2.0
roboset (teleoperation) 5.0
roboturk 3.0
stanford hydra dataset 3.0
taco play 2.0
toto 1.5
ucsd kitchen dataset 0.2
utaustin mutex 3.0
viola 1.0

Table 3. Open X-Embodiment data mixture for SPEAR-1 pre-
training

A.2. VLM training
A.2.1. VQA tasks for VLM pre-training
The Visual Question Answering (VQA) tasks used during
VLM pre-training are inspired by VLA embodied tasks and
aim to embed as much control-relevant 3D information into
the VLM as possible. We use templated question-answer
pairs grouped in the following categories:
• 3D keypoints prediction: Output the 3D coordinates of

the closest, furthest and center points of an object with
respect to the camera frame

• 3D bounding prediction: Output the vertices of the 3D
bounding box of an object

• Object-to-object distance prediction: Output the direct
distance between object X and object Y in 3D space as
well as its xyz components

• Object-to-object bounding box prediction: Output the
distance between the bounding box vertices and the cen-
ters of object X and object Y

• Backprojection: Locate the vertices of the 3D bounding
box of an object on the 2D image

• Chain-of-thought comparisons: What is the distance
from the camera to object X? What is the distance from
the camera to object Y? Which object is closer to the cam-
era?

To further encourage the model to ’reason’ over the in-
formation provided and attend to the right objects, in a sin-
gle training example we use a random number (between 1
and 4) of question-answer pairs corresponding to different
prompts and objects in the scene. To resolve ambiguities, if
two instances of the same type of object appear in the im-
age, we filter them out and never ask questions about them.

A.2.2. VLM encoder fusion strategies
We experimented with 2 different strategies to combine the
outputs of the SigLIP and MoGe encoders:
1. Concatenating the visual features predicted by both en-

coders and projecting them via a linear layer to the LLM
embedding space. In particular, for SigLIP we take only
the tokens at the last layer of the vision encoder, while
for MoGe we take the tokens at the last 4 layers of
the encoder, following the approach used by MoGe ar-
chitecutre to decode the features to a 3D point cloud.

2. Using MoGe’s predicted 3D point cloud P in the
camera ego pose (in an affine-invariant space) and
adding them to the SigLIP encoder features, similar to
SpatialVLA [33]. In particular, MoGe’s 3D point cloud
output P ∈ RH×W×3 is embedded to P′ ∈ Rh×w×d

through a projector ψ(·), composed of normaliza-
tion, convolution, sinusoidal embedding γ(x) =
(x, sin(20πx), cos(20πx), . . . , sin(2L−1πx), cos(2L−1πx))
[29] and an MLP. Finally, the features F′ = F + P′

are fed to PaliGemma’s SigLIP linear projector, where
F ∈ Rh×w×d denotes the features at the SigLIP encoder
output.
During our preliminary VLM evaluations we found the

first strategy to demonstrate qualitatively better perfor-
mance on bounding box prediction tasks. In particular,
models trained with the second approach struggled to con-
sistently output ”grammatically” correct bounding boxes,
e.g. they would output 22 or 23 depth tokens instead of the
required 24. We therefore used the first approach for all
VLM pre-training experiments in the main paper.

A.2.3. Depth tokenization
To encode 3D information into text we extend the
PaliGemma tokenizer with N = 1024 3D tokens, as 3D co-
ordinates are conceptually different from the existing visual
and language tokens. This is in line with PaliGemma’s ap-
proach of extending Gemma’s tokenizer to pixel locations.
Each 3D token corresponds to a quantized distance value
in the range [zmin, zmax], where zmin and zmax are emperi-
cally computed as the 1st and 99th quantiles of the 3D point
cloud distribution along any of the xyz coordinates.
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Dataset Domain / Subset # Annotated Images Segmentation Masks
EgoExo4D [13] Cooking & Bike Repair ∼200k GT
Bridge [41] Robot Demonstrations ∼30k SAM2 Generated
Total ∼230k

Table 4. Annotated image counts for training dataset construction, with segmentation mask availability.

Task 0.25 0.50 0.75 1.00

Carrot on Plate
(w/ distractors & elevations) Reach carrot Pick up carrot Drop on/near plate Correctly place on plate

Marker in Cup
(w/ distractors) Reach marker Pick up marker Drop on/near cup Place inside cup

Cover the Pot – Pick up lid Drop lid on pot Correctly cover pot

Table 5. Scoring rubric for Franka evaluation tasks.

We found the distance values in the data to approxi-
mately follow a Normal distribution. Therefore, to allow
for more accurate tokenization, we compute non-uniform
bins with fine-grained discretization around the mean and
spread out widths near the tails such that the distribution of
3D tokens approximates a uniform.

We initialize the new token embedding weights from a
multivariate normal distribution that has the mean and co-
variance of the pretrained embeddings [15, 16].

A.2.4. VQA data annotation pipeline
We follow the method described in Section 3.1 in order
to enrich 2D images with semantics, segmentation masks
and 3D point clouds. We also experimented with Ground-
ingDINO [28] instead of Gemini, but we found the semantic
labels produced by GroudingDINO to be a lot less accurate
and consistent. We found that if we prompt SAM2 [34]
with 2D bounding boxes near the target objects, the output
segmentation mask would be of high quality.

We also found that MoGe [43] would output depths at
different scales depending on the input image size. There-
fore, we resized all our images to 840x630 for MoGe point
cloud annotations.

For 3D bounding box estimation, after filtering the 3D
point cloud with a segmentation mask, we run statistical
outlier removal and esitmate an oriented 3D bounding box
around the remaining points using Open3D [46]. To facili-
tate learning, we order all 8 bounding box vertices in a con-
sistent way, starting based on their spatial coordinates with
respect to the camera frame.

A.3. VLA training
A.3.1. VLA training details
During VLA training we use an action chunk of sizeH = 5
and frequency of 5Hz. As not all datasets in Open X-

Embodiment provide action labels at 5Hz, we downsample
or upsample the actions accordingly via linear interpolation.
This is done with the goal to encourage the model to share
knowledge across datasets with different control frequen-
cies and embodiments instead of ’memorize’ each dataset
separately.

A.3.2. Flow matching details
To address the inherent double coverage of 3D rotations by
the unit quaternion group S3, we ensure that all quaternions
used during training and inference lie in the same half-space
defined by ℜ(q) = qw > 0.

Quaternion integration. Given a unit quaternion qt ∈
S3 and its time derivative q̇t ∈ R4, we can compute the an-
gular velocity of rotation via ωt = 2.0 · ℑ(q∗

t ⊗ q̇t) ∈ R3.
For a small time step ∆t, the corresponsing delta rotation is
given by a rotation vector around the unit axis ω̂ = ω/||ω||
over an angle ∆ϕ = ||ω||∆t. The corresponding delta
quaternion is given by

∆q =

[
cos

(
∆ϕ

2

)
, ω̂ sin

(
∆ϕ

2

)]
(6)

The integrated unit quaternion is then given by qt+∆t =
qt ⊗∆q ∈ S3,

A.4. Real-world robot task progression scoring
We provide the detailed task progression scoring for all real-
world evaluations on the Franka robot in Table 5.
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